
MOMO.FUN-Swap-v3
Smart Contract Security Audit

No. 202408241154

Aug 24th, 2024

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

MOMO.FUN-Swap-v3 Security Audit

Page 2 of 17

Contents

1 Overview ........................................................................................................................................................... 5

1.1 Project Overview .................................................................................................................................... 5

1.2 Audit Overview ....................................................................................................................................... 5

1.3 Audit Method .......................................................................................................................................... 5

2 Findings ............................................................................................................................................................ 7

[Swap-v3-01] Gas optimization suggestions ........................................................................................... 8

3 Appendix .......................................................................................................................................................... 9

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts ...................................................9

3.2 Audit Categories ................................................................................................................................. 12

3.3 Disclaimer ............................................................................................................................................ 15

3.4 About Beosin ....................................................................................................................................... 16



```

MOMO.FUN-Swap-v3 Security Audit

Page 3 of 17

Summary of Audit Results

After auditing, 1 Info risk item was identified in the MOMO.FUN-Swap-v3 project. Specific audit details

will be presented in the Findings section. Users should pay attention to the following aspects when

interacting with this project:

Info
Fixed : 0 Acknowledged: 1


```

MOMO.FUN-Swap-v3 Security Audit

Page 4 of 17

 Project Description:

1. Business overview

This project is a decentralized exchange (DEX) protocol inspired by Uniswap V3, allowing users to earn

trading fee rewards by providing liquidity through IDO. The project is divided into Core and Periphery

modules.

The Core module is responsible for implementing the specific functionalities of the Automated Market

Maker (AMM). It includes the creation of liquidity pools, management of user liquidity within individual

pools, and price calculations during token swaps. The UniswapV3Factory contract primarily manages

the liquidity pools, where the createPool function can be used to create a liquidity pool for a specified

tokenA, tokenB, and fee. The UniswapV3Pool contract handles the addition and removal of liquidity

within a pool, calculates token amounts and prices during swaps, and manages user interactions. The

mint function allows users to add specific liquidity within a chosen price range, while the burn function

facilitates liquidity removal. Additionally, the swap function calculates the token amounts based on the

current price ranges in the pool, the user's desired execution price (sqrtPriceLimitX96), and the current

pool price. Liquidity providers in UniswapV3Pool do not earn fee rewards continuously but only when

their liquidity is utilized in a swap.

The Periphery module provides tools and interfaces to simplify user interactions. Through this module,

users can easily create pools, add or remove liquidity, set price ranges, customize fee tiers, and

perform token swaps. The PoolInitializer contract is responsible for creating and initializing liquidity

pools. Users can call the createAndInitializePoolIfNecessary function to create a pool and set an initial

price, with the option to select different fee rates (e.g., 0.01%, 0.05%, 0.3%, 1%), each corresponding

to different pools. The NonfungiblePositionManager contract manages liquidity positions, allowing

users to add liquidity within a specified price range and receive an NFT representing the position

through the mint and increaseLiquidity functions, or remove liquidity using the decreaseLiquidity and

burn functions. The SwapRouter contract facilitates token swaps, where users can use functions like

exactInputSingle, exactOutputSingle, and exactInput to perform swaps. The fees generated during a

swap are not shared among all liquidity providers but are only distributed to those providing liquidity in

the price range used for that specific swap.



```

MOMO.FUN-Swap-v3 Security Audit

Page 5 of 17

1 Overview

1.1 Project Overview

Project Name MOMO.FUN-Swap-v3

Project Language Solidity

Platform EVM Chain

Code Base

https://github.com/ido-fe/contract-v3/tree/main/contracts/v3-periphery

https://github.com/ido-fe/contract-v3/blob/main/contracts/NoDelegateCall.sol

https://github.com/ido-fe/contract-v3/blob/main/contracts/UniswapV3Factory.sol

https://github.com/ido-fe/contract-v3/blob/main/contracts/UniswapV3Pool.sol

https://github.com/ido-fe/contract-v3/blob/main/contracts/UniswapV3PoolDeploy
er.sol

Commit a2f1828d8632755f8fa2a5aad22d8c800aaa77fd

1.2 Audit Overview

Audit work duration: Aug 23, 2024-Aug 24, 2024

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

https://github.com/ido-fe/contract-v3/tree/main/contracts/v3-periphery
https://github.com/ido-fe/contract-v3/blob/main/contracts/NoDelegateCall.sol
https://github.com/ido-fe/contract-v3/blob/main/contracts/UniswapV3Factory.sol
https://github.com/ido-fe/contract-v3/blob/main/contracts/UniswapV3Pool.sol


```

MOMO.FUN-Swap-v3 Security Audit

Page 6 of 17

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

MOMO.FUN-Swap-v3 Security Audit

Page 7 of 17

2 Findings

Index Risk description Severity level Status

Swap-v3-01 Gas optimization suggestions Info Acknowledged


```

MOMO.FUN-Swap-v3 Security Audit

Page 8 of 17

Finding Details:

[Swap-v3-01] Gas optimization suggestions

Severity Level Info

Lines interfaces\INonfungiblePositionManager.sol #L12

libraries\ChainId.sol #L8-12

Type Coding Conventions

Description The current contract has some code that can be further optimized for gas

usage. This optimization can reduce the gas consumption during the

deployment and execution of the contract, while also providing additional

assurance of code rigor.

1. Unused Import Contracts:

In the INonfungiblePositionManager interface contract, PoolAddress.sol is only

referenced and not actually used, leading to unnecessary gas consumption.

import '../libraries/PoolAddress.sol';

2. Keyword Optimization:

In the ChainId library, the get function only retrieves the current chain ID and

does not involve any other function calls. Therefore, the view keyword can be

optimized to pure to reduce gas consumption.

function get() internal view returns (uint256 chainId) {

assembly {

chainId := chainid()

}

}

Recommendation

Gas optimization in smart contracts can lower transaction execution costs and

improve transaction efficiency, enabling developers and users to deploy,

interact with, and process data in smart contracts at a lower cost. Therefore,

we currently propose the following two suggestions for gas optimization:

1. Remove the unused reference to PoolAddress.sol.

2. Change the keyword of the get function from view to pure.

Status Acknowledged.



```

MOMO.FUN-Swap-v3 Security Audit

Page 9 of 17

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info


```

MOMO.FUN-Swap-v3 Security Audit

Page 10 of 17

3.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.3 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.



```

MOMO.FUN-Swap-v3 Security Audit

Page 11 of 17

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.4 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.


```

MOMO.FUN-Swap-v3 Security Audit

Page 12 of 17

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions



```

MOMO.FUN-Swap-v3 Security Audit

Page 13 of 17

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in FunC language should strictly check for gas consumption and trigger

events on critical changes.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

TON Features

*Gas Consumption:

Contracts should be strictly checked for gas, so that execution does not fail due to insufficient gas in a

TON to execute all the code, and that code already executed is not rolled back.

*Message Forgery:

In FunC there are parent and child contracts that need to verify messages between the parent and child,

and if a forgedmessage is accepted there may be risks such as arbitrary coinminting by an attacker.

*Restore on Failure:

When message processing fails, the contract should throw an exception and senders with a fallback

flag set should fall back, otherwise a partial execution of the transaction may occur, resulting in a loss

of assets.

*DoS (Denial of Service):

As TON supports asynchronous execution, the nature of the func programming language can introduce

contention conditions and logic errors due to asynchronous and threaded execution, which can lead to

denial of service vulnerabilities.

*Message Flow Error:

In FunC, there are message calls between contracts and the message flow should be checked

rigorously for design compliance, otherwise unexpected errors and losses can be introduced.

*Data Structure Error:

When calling the set_data function, you need to pay attention to the order of the arguments, otherwise

it may lead to confusing data stored in the contract and seriously affect the business logic.


```

MOMO.FUN-Swap-v3 Security Audit

Page 14 of 17

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.



```

MOMO.FUN-Swap-v3 Security Audit

Page 15 of 17

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

MOMO.FUN-Swap-v3 Security Audit

Page 16 of 17

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[Swap-v3-01] Gas optimization suggestions

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin


