
MOMO.FUN-Swap-v2
Smart Contract Security Audit

No. 202408141122

Aug 14th, 2024

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

MOMO.FUN-Swap-v2 Security Audit

Page 2 of 20

Contents

1 Overview ........................................................................................................................................................... 5

1.1 Project Overview .................................................................................................................................... 5

1.2 Audit Overview ....................................................................................................................................... 5

1.3 Audit Method .......................................................................................................................................... 5

2 Findings ............................................................................................................................................................ 7

[Swap-v2-01] Code optimization ...............................................................................................................8

[Swap-v2-02] Redundant codes ............................................................................................................. 10

[Swap-v2-03] Missing trigger event ....................................................................................................... 12

3 Appendix ........................................................................................................................................................ 13

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................13

3.2 Audit Categories ................................................................................................................................. 16

3.3 Disclaimer ............................................................................................................................................ 18

3.4 About Beosin ....................................................................................................................................... 19



```

MOMO.FUN-Swap-v2 Security Audit

Page 3 of 20

Summary of Audit Results

After auditing, 1 Low and 2 Info-risk item were identified in the MOMO.FUN-Swap-v2 project. Specific

audit details will be presented in the Findings section. Users should pay attention to the following

aspects when interacting with this project:

Low
Fixed : 0 Acknowledged: 1

Info
Fixed : 0 Acknowledged: 2


```

MOMO.FUN-Swap-v2 Security Audit

Page 4 of 20

 Project Description:

Business overview

The main functions of the v2 part of MOMO.FUN in the scope of this audit are similar to Uniswap v2. It

MOMO.FUN operates on an automated market maker (AMM) model, where liquidity providers (LPs)

contribute funds to liquidity pools, and trades are executed against these pools.allows users to freely

create trading pairs, add and remove liquidity, and exchange related tokens in trading pairs. Key

features include:

 Token Swapping:

MOMO.FUN enables users to swap between different ERC-20 tokens. The exchange rate between the

two tokens is determined by the ratio of their quantities in the liquidity pool, following the constant

product formula x * y = k.

 Liquidity Provision:

Users can become liquidity providers by depositing an equal value of two tokens into a liquidity pool. In

return, they receive liquidity tokens, which represent their share of the pool and entitle them to a

portion of the trading fees generated.

 Automated Market Making (AMM):

MOMO.FUN uses an AMM system, where trades are executed against a smart contract rather than

directly between buyers and sellers. The AMM model ensures that there is always liquidity available for

token swaps, but the price of tokens adjusts based on supply and demandwithin the pool.

 Fee Structure:

MOMO.FUN charges a 0.3% fee on all trades, which is distributed to liquidity providers in proportion to

their share of the liquidity pool. This incentivizes users to provide liquidity and helps maintain the

stability of the platform.

 Flash Swaps:

MOMO.FUN allows users to borrow tokens from a liquidity pool without providing collateral, as long as

the borrowed tokens are returned by the end of the transaction. This feature enables advanced trading

strategies, such as arbitrage and collateral swaps, without the need for upfront capital.



```

MOMO.FUN-Swap-v2 Security Audit

Page 5 of 20

1 Overview

1.1 Project Overview

Project Name MOMO.FUN-Swap-v2

Project
Language Solidity

Platform EVM Chain

Code Base
https://github.com/ido-fe/contract-v3/tree/main/contracts/v2-periphery/contracts

https://github.com/ido-fe/contract-v3/tree/main/contracts/v2-core/contracts

Commit Hash bbb1906c76a0989f33c8d8d18981922fd1a9cf04

1.2 Audit Overview

Audit work duration: Aug 12, 2024 – Aug 14, 2024

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.

https://github.com/ido-fe/contract-v3/tree/main/contracts/v2-periphery/contracts


```

MOMO.FUN-Swap-v2 Security Audit

Page 6 of 20

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.



```

MOMO.FUN-Swap-v2 Security Audit

Page 7 of 20

2 Findings

Index Risk description Severity level Status

Swap-v2-01 Code optimization Low Acknowledged

Swap-v2-02 Redundant codes Info Acknowledged

Swap-v2-03 Missing trigger event Info Acknowledged


```

MOMO.FUN-Swap-v2 Security Audit

Page 8 of 20

Finding Details:

[Swap-v2-01] Code optimization

Severity Level Low

Type Business Security

Lines UniswapV2Pair.sol#L60-115

Description When the UniswapV2Pair contract is initialized, the _initialize function is called

once in both _initializeName and _initializeSymbol, and with exactly the same

arguments in both calls. And as an internal function in the constructor, its

return name_ and symbol_ are also not used and are meaningless returns. The

main purpose of the constructor is to initialize the state of the contract, not to

handle and use the return values.

constructor(

address _token0,

address _token1

)

ERC20WithPermit(

_initializeName(_token0, _token1),

_initializeSymbol(_token0, _token1)

)

{}

function _initializeName(

address _token0,

address _token1

) internal returns (string memory name_) {

(string memory name_, string memory symbol_) = _initialize(

_token0,

_token1

);

return name_;

}

function _initializeSymbol(

address _token0,

address _token1

) internal returns (string memory symbol_) {

(string memory name_, string memory symbol_) = _initialize(



```

MOMO.FUN-Swap-v2 Security Audit

Page 9 of 20

_token0,

_token1

);

return symbol_;

}

Recommendation

It is recommended that the _initializeName and _initializeSymbol functions be

removed and modified to call the _initialize function only once in the

constructor and remove the returned name_ and symbol_.

Status Acknowledged.


```

MOMO.FUN-Swap-v2 Security Audit

Page 10 of 20

[Swap-v2-02] Redundant codes

Severity Level Info

Type Coding Conventions

Lines UniswapV2Factory.sol#L43-51

UniswapV2Pair.sol#L84-85

Description The setFeeTo and setFeeToSetter functions in the UniswapV2Factory contract

do not need to be set to override. And The initial values "Dex LP Token" and "LP"

set when declaring temporary variables name_ and symbol_ in the

UniswapV2Pair contract's _initialize function were not used subsequently.

These are all redundant codes.

function setFeeTo(address _feeTo) external override {

require(msg.sender == feeToSetter, "UniswapV2: FORBIDDEN");

feeTo = _feeTo;

}

function setFeeToSetter(address _feeToSetter) external override {

require(msg.sender == feeToSetter, "UniswapV2: FORBIDDEN");

feeToSetter = _feeToSetter;

}

function _initialize(

address _token0,

address _token1

) internal returns (string memory name_, string memory symbol_) {

factory = msg.sender;

token0 = _token0;

token1 = _token1;

(bool success0, string memory symbol0) =

MetadataHelper.getSymbol(

_token0

);

(bool success1, string memory symbol1) =

MetadataHelper.getSymbol(

_token1

);

string memory name_ = "Dex LP Token";

string memory symbol_ = "LP";

if (success0 && success1) {

name_ = string(



```

MOMO.FUN-Swap-v2 Security Audit

Page 11 of 20

abi.encodePacked("ZkDex ", symbol0, "/", symbol1, " LP

Token")

);

symbol_ = string(abi.encodePacked(symbol0, "/", symbol1, "

ZLP"));

}

return (name_, symbol_);

}

Recommendation It is recommended to delete redundant codes.

Status Acknowledged.


```

MOMO.FUN-Swap-v2 Security Audit

Page 12 of 20

[Swap-v2-03] Missing trigger event

Severity Level Info

Type Coding Conventions

Lines UniswapV2Factory.sol#L43-51

Description The UniswapV2Factory contract did not trigger an event when the feeTo and

feeToSetter addresses were modified.

function setFeeTo(address _feeTo) external override {

require(msg.sender == feeToSetter, "UniswapV2: FORBIDDEN");

feeTo = _feeTo;

}

function setFeeToSetter(address _feeToSetter) external override {

require(msg.sender == feeToSetter, "UniswapV2: FORBIDDEN");

feeToSetter = _feeToSetter;

}

Recommendation

It is recommended to emit events when modifying critical variables is a

recommended practice as it provides a standardized way to capture and

communicate important changes within the contract. Events enable

transparency and allow external systems and users to easily track and react to

thesemodifications.

Status Acknowledged.



```

MOMO.FUN-Swap-v2 Security Audit

Page 13 of 20

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info


```

MOMO.FUN-Swap-v2 Security Audit

Page 14 of 20

3.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.3 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.



```

MOMO.FUN-Swap-v2 Security Audit

Page 15 of 20

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.4 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.


```

MOMO.FUN-Swap-v2 Security Audit

Page 16 of 20

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security

Business Logics

Business Implementations

Manipulable Token Price

Centralized Asset Control

Asset Tradability

Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions



```

MOMO.FUN-Swap-v2 Security Audit

Page 17 of 20

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Solidity language should fix the compiler version and do not use

deprecated keywords.

 General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

*Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something

Beosin can control. Business security requires the participation of the project party. The project party and users

need to stay vigilant at all times.


```

MOMO.FUN-Swap-v2 Security Audit

Page 18 of 20

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.



```

MOMO.FUN-Swap-v2 Security Audit

Page 19 of 20

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.

Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[Swap-v2-01] Code optimization
	[Swap-v2-02] Redundant codes
	[Swap-v2-03] Missing trigger event

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin

